Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0289707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540718

RESUMO

We have previously demonstrated that human liver-type phosphofructokinase 1 (PFK1) recruits other rate-determining enzymes in glucose metabolism to organize multienzyme metabolic assemblies, termed glucosomes, in human cells. However, it has remained largely elusive how glucosomes are reversibly assembled and disassembled to functionally regulate glucose metabolism and thus contribute to human cell biology. We developed a high-content quantitative high-throughput screening (qHTS) assay to identify regulatory mechanisms that control PFK1-mediated glucosome assemblies from stably transfected HeLa Tet-On cells. Initial qHTS with a library of pharmacologically active compounds directed following efforts to kinase-inhibitor enriched collections. Consequently, three compounds that were known to inhibit cyclin-dependent kinase 2, ribosomal protein S6 kinase and Aurora kinase A, respectively, were identified and further validated under high-resolution fluorescence single-cell microscopy. Subsequent knockdown studies using small-hairpin RNAs further confirmed an active role of Aurora kinase A on the formation of PFK1 assemblies in HeLa cells. Importantly, all the identified protein kinases here have been investigated as key signaling nodes of one specific cascade that controls cell cycle progression in human cells. Collectively, our qHTS approaches unravel a cell cycle-associated signaling network that regulates the formation of PFK1-mediated glucosome assembly in human cells.


Assuntos
Aurora Quinase A , Ensaios de Triagem em Larga Escala , Humanos , Células HeLa , Ciclo Celular , Glucose/metabolismo
2.
Leukemia ; 34(1): 35-49, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31439943

RESUMO

Pediatric T cell acute lymphoblastic leukemia (T-ALL) cells frequently contain mutations in the interleukin-7 (IL-7) receptor pathway or respond to IL-7 itself. To target the IL-7 receptor on T-ALL cells, murine monoclonal antibodies (MAbs) were developed against the human IL-7Rα chain and chimerized with human IgG1 constant regions. Crystal structures demonstrate that the two MAbs bound different IL-7Rα epitopes. The MAbs mediated antibody-dependent cell-mediated cytotoxicity (ADCC) against patient-derived xenograft (PDX) T-ALL cells, which was improved by combining two MAbs. In vivo, the MAbs showed therapeutic efficacy via ADCC-dependent and independent mechanisms in minimal residual and established disease. PDX T-ALL cells that relapsed following a course of chemotherapy displayed elevated IL-7Rα, and MAb treatment is effective against relapsing disease, suggesting the use of anti-IL7Rα MAbs in relapsed T-ALL patients or patients that do not respond to chemotherapy.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Interleucina-7/antagonistas & inibidores , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Biotechnol Bioeng ; 116(12): 3242-3252, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31478189

RESUMO

Mycoplasma contamination events in biomanufacturing facilities can result in loss of production and costly cleanups. Mycoplasma may survive in mammalian cell cultures with only subtle changes to the culture and may penetrate the 0.2 µm filters often used in the primary clarification of harvested cell culture fluid. Culture cell-based and indicator cell-based assays that are used to detect mycoplasma are highly sensitive but can take up to 28 days to complete and cannot be used for real-time decision making during the biomanufacturing process. To support real-time measurements of mycoplasma contamination, there is a push to explore nucleic acid testing. However, cell-based methods measure growth or colony forming units and nucleic acid testing measures genome copy number; this has led to ambiguity regarding how to compare the sensitivity of the methods. In addition, the high risk of conducting experiments wherein one deliberately spikes mycoplasma into bioreactors has dissuaded commercial groups from performing studies to explore the multiple variables associated with the upstream effects of a mycoplasma contamination in a manufacturing setting. Here we studied the ability of Mycoplasma arginini to persist in a single-use, perfusion rocking bioreactor system containing a Chinese hamster ovary (CHO) DG44 cell line expressing a model monoclonal immunoglobulin G1 (IgG1) antibody. We examined M. arginini growth and detection by culture methods, as well as the effects of M. arginini on mammalian cell health, metabolism, and productivity. We compared process parameters and controls normally measured in bioreactors including dissolved oxygen, gas mix, and base addition to maintain pH, to examine parameter changes as potential indicators of contamination. Our work showed that M. arginini affects CHO cell growth profile, viability, nutrient consumption, oxygen use, and waste production at varying timepoints after M. arginini introduction to the culture. Importantly, how the M. arginini contamination impacts the CHO cells is influenced by the concentration of CHO cells and rate of perfusion at the time of M. arginini spike. Careful evaluation of dissolved oxygen, pH control parameters, ammonia, and arginine over time may be used to indicate mycoplasma contamination in CHO cell cultures in a bioreactor before a read-out from a traditional method.


Assuntos
Reatores Biológicos/microbiologia , Técnicas de Cultura de Células , Contaminação de Equipamentos , Mycoplasma/crescimento & desenvolvimento , Animais , Células CHO , Cricetulus
4.
J Biol Chem ; 292(22): 9191-9203, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28424264

RESUMO

Sequential metabolic enzymes in glucose metabolism have long been hypothesized to form multienzyme complexes that regulate glucose flux in living cells. However, it has been challenging to directly observe these complexes and their functional roles in living systems. In this work, we have used wide-field and confocal fluorescence microscopy to investigate the spatial organization of metabolic enzymes participating in glucose metabolism in human cells. We provide compelling evidence that human liver-type phosphofructokinase 1 (PFKL), which catalyzes a bottleneck step of glycolysis, forms various sizes of cytoplasmic clusters in human cancer cells, independent of protein expression levels and of the choice of fluorescent tags. We also report that these PFKL clusters colocalize with other rate-limiting enzymes in both glycolysis and gluconeogenesis, supporting the formation of multienzyme complexes. Subsequent biophysical characterizations with fluorescence recovery after photobleaching and FRET corroborate the formation of multienzyme metabolic complexes in living cells, which appears to be controlled by post-translational acetylation on PFKL. Importantly, quantitative high-content imaging assays indicated that the direction of glucose flux between glycolysis, the pentose phosphate pathway, and serine biosynthesis seems to be spatially regulated by the multienzyme complexes in a cluster-size-dependent manner. Collectively, our results reveal a functionally relevant, multienzyme metabolic complex for glucose metabolism in living human cells.


Assuntos
Glucose/metabolismo , Glicólise/fisiologia , Complexos Multienzimáticos/metabolismo , Via de Pentose Fosfato/fisiologia , Fosfofrutoquinase-1 Hepática/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Transferência Ressonante de Energia de Fluorescência , Glucose/genética , Células HeLa , Humanos , Complexos Multienzimáticos/genética , Fosfofrutoquinase-1 Hepática/genética
5.
Biochim Biophys Acta ; 1864(1): 77-84, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26025769

RESUMO

A cell is a highly organized, dynamic, and intricate biological entity orchestrated by a myriad of proteins and their self-assemblies. Because a protein's actions depend on its coordination in both space and time, our curiosity about protein functions has extended from the test tube into the intracellular space of the cell. Accordingly, modern technological developments and advances in enzymology have been geared towards analyzing protein functions within intact single cells. We discuss here how fluorescence single-cell microscopy has been employed to identify subcellular locations of proteins, detect reversible protein-protein interactions, and measure protein activity and kinetics in living cells. Considering that fluorescence single-cell microscopy has been only recently recognized as a primary technique in enzymology, its potentials and outcomes in studying intracellular protein functions are projected to be immensely useful and enlightening. We anticipate that this review would inspire many investigators to study their proteins of interest beyond the conventional boundary of specific disciplines. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.


Assuntos
Ensaios Enzimáticos/métodos , Espaço Intracelular/enzimologia , Microscopia de Fluorescência/métodos , Análise de Célula Única/métodos , Transferência Ressonante de Energia de Fluorescência , Cinética , Modelos Biológicos , Ligação Proteica , Especificidade por Substrato , Imagem com Lapso de Tempo/métodos
6.
Biochemistry ; 54(3): 870-80, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25540829

RESUMO

Enzymes in human de novo purine biosynthesis have been demonstrated to form a reversible, transient multienzyme complex, the purinosome, upon purine starvation. However, characterization of purinosomes has been limited to HeLa cells and has heavily relied on qualitative examination of their subcellular localization and reversibility under wide-field fluorescence microscopy. Quantitative approaches, which are particularly compatible with human disease-relevant cell lines, are necessary to explicitly understand the purinosome in live cells. In this work, human breast carcinoma Hs578T cells have been utilized to demonstrate the preferential utilization of the purinosome under purine-depleted conditions. In addition, we have employed a confocal microscopy-based biophysical technique, fluorescence recovery after photobleaching, to characterize kinetic properties of the purinosome in live Hs578T cells. Quantitative characterization of the diffusion coefficients of all de novo purine biosynthetic enzymes reveals the significant reduction of their mobile kinetics upon purinosome formation, the dynamic partitioning of each enzyme into the purinosome, and the existence of three intermediate species in purinosome assembly under purine starvation. We also demonstrate that the diffusion coefficient of the purine salvage enzyme, hypoxanthine phosphoribosyltransferase 1, is not sensitive to purine starvation, indicating exclusion of the salvage pathway from the purinosome. Furthermore, our biophysical characterization of nonmetabolic enzymes clarifies that purinosomes are spatiotemporally different cellular bodies from stress granules and cytoplasmic protein aggregates in both Hs578T and HeLa cells. Collectively, quantitative analyses of the purinosome in Hs578T cells led us to provide novel insights for the dynamic architecture of the purinosome assembly.


Assuntos
Complexos Multienzimáticos/metabolismo , Purinas/biossíntese , Fenômenos Biofísicos , Vias Biossintéticas , Linhagem Celular Tumoral , Sobrevivência Celular , Grânulos Citoplasmáticos/metabolismo , Citosol/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/metabolismo , Humanos
7.
J Phys Chem A ; 116(27): 7261-71, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22612846

RESUMO

Model compounds have been found to structurally mimic the catalytic hydrogen-producing active site of Fe-Fe hydrogenases and are being explored as functional models. The time-dependent behavior of Fe(2)(µ-S(2)C(3)H(6))(CO)(6) and Fe(2)(µ-S(2)C(2)H(4))(CO)(6) is reviewed and new ultrafast UV- and visible-excitation/IR-probe measurements of the carbonyl stretching region are presented. Ground-state and excited-state electronic and vibrational properties of Fe(2)(µ-S(2)C(3)H(6))(CO)(6) were studied with density functional theory (DFT) calculations. For Fe(2)(µ-S(2)C(3)H(6))(CO)(6) excited with 266 nm, long-lived signals (τ = 3.7 ± 0.26 µs) are assigned to loss of a CO ligand. For 355 and 532 nm excitation, short-lived (τ = 150 ± 17 ps) bands are observed in addition to CO-loss product. Short-lived transient absorption intensities are smaller for 355 nm and much larger for 532 nm excitation and are assigned to a short-lived photoproduct resulting from excited electronic state structural reorganization of the Fe-Fe bond. Because these molecules are tethered by bridging disulfur ligands, this extended di-iron bond relaxes during the excited state decay. Interestingly, and perhaps fortuitously, the time-dependent DFT-optimized exited-state geometry of Fe(2)(µ-S(2)C(3)H(6))(CO)(6) with a semibridging CO is reminiscent of the geometry of the Fe(2)S(2) subcluster of the active site observed in Fe-Fe hydrogenase X-ray crystal structures. We suggest these wavelength-dependent excitation dynamics could significantly alter potential mechanisms for light-driven catalysis.


Assuntos
Proteínas de Bactérias/química , Complexos de Coordenação/síntese química , Hidrogênio/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Ferro/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Dissulfetos/química , Ligantes , Modelos Químicos , Teoria Quântica , Análise Espectral , Fatores de Tempo , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...